DETERMINACION DE LA DOSIS MEDIA LETAL (DL 50)
Y LOS EFECTOS DE LAS RADIACIONES GAMMA SOBRE
RHODNIUS PROLIXUS Y R. NEGLECTUS
(HEMIPTERA: REDUVIIDAE)

Lic. CORINA WENDEHAKE DE JUNCA *
Lic. GENEVA LUCIANI DE RIVAS
Dr. OCTAVIO E. SOUSA PITTI, A.P.M.C. **

* Departamento de Parasitología del Laboratorio Conmemorativo Gorgas.
** Jefe del Departamento de Parasitología del Laboratorio Conmemorativo Gorgas y Profesor Titular de Microbiología en la Facultad de Medicina de la Universidad de Panamá.

Reimpreso de la Revista Médica de Panamá 2 (3): 218-228, Sept. 1977
Los autores estudiaron la dosis letal media (DL50) de las radiaciones gamma sobre especímenes de *Rhodnius prolixus* y *R. neglectus*. Observaron que el *R. neglectus* es más susceptible a la irradiación que el *R. prolixus*. La dosis media letal para los *R. prolixus* adultos fue de 23,000 r; para las ninñas del 5o estadio fue de 25,000 r; y para las del 3er estadio fue de 27,000 r. En los *R. neglectus* adultos la dosis media letal fue de 11,900 r; para las ninñas del 5o estadio fue de 13,000 r y para las de 3er estadio fue de 15,000 r. La dosis letal comprabada fue de 160,000 r.

Las radiaciones gamma 2,500 r y 5,000 r aceleraron notablemente la producción de huevos. La fertilidad disminuyó al aumentar la dosis de irradiación. Las radiaciones de 10,000 r o más afectaron la producción de huevos, produciéndose una completa esterilidad. Dosis de 10,000 r o más, afectaron la motilidad. En todos los casos citados, los estadios larvales presentaron una menor sensibilidad que los adultos.

Los fundamentos de este trabajo se basan en la determinación de la dosis letal media (DL50) de las radiaciones gamma y sus efectos biológicos en distintas dosificaciones de irradiación sobre especímenes de *Rhodnius prolixus* y *R. neglectus* (Hemiptera: Reduviidae). Estas dos especies de chinches hematófagos son conocidas en América del Sur y en partes de América Central como huéspedes naturales de *Trypanosoma cruzi* y pueden ser vectores efectivos de la Enfermedad de Chagas. La importancia del *R. prolixus* como vector de la enfermedad de Chagas en Venezuela, Colombia y América Central, ha
El presente trabajo tiene el propósito de obtener información básica sobre los efectos de la radiación gamma en diferentes estadios de desarrollo (adultos, ninñas de 5º y 3º estadio) de *R. prolixus* y *R. neglectus*, el cual habrá de servir de base o fundamentos iniciales para futuros trabajos sobre el efecto de la radiación en la susceptibilidad de los triatómínicos a la infección con *T. cruzi* y *T. rangeli* y las consecuentes relaciones huésped-parasitarias.

**Material y método**

*Cepas utilizadas en la experiencia*. Por razones de conveniencia, se utilizaron dos tipos de chinches: el *R. prolixus* y el *R. neglectus*, provenientes de las colonias del Departamento de Parasitología del Laboratorio Conmemorativo Gorgas. Estos animales fueron criados exclusivamente en el Insectario de dicho Laboratorio, donde la temperatura se mantuvo regulada, de 70 a 80°F y la humedad relativa se mantuvo, adecuadamente, en 80-90%.

Los ejemplares utilizados fueron adultos (hembras y machos) y ninñas del tercer y quinto estadios.

**Técnica experimental.** Para esta experiencia se utilizó un total de 1690 ejemplares de *R. prolixus* y 221 ejemplares de *R. neglectus*. Se les aplicó a los *R.*
prolixus 8 tipos distintos de dosis de radiación y a los R. neglectus, 7 dosis.

Se dividieron los ejemplares en grupos, para facilitar su manejo y el uso de la fuente radioactiva. Los ejemplares de R. prolixus fueron agrupados en conjunto de 25 por envase; los ejemplares de R. neglectus, cuya cantidad era menor, fueron agrupados en conjuntos de 10 por envase. Se emplearon adultos y ninñas de 3er y 5o estadios, procurando que cada uno hubiera alcanzado recientemente su estadio correspondiente. Los grupos así constituidos recibieron una alimentación, cinco días antes de la irradiación.

Las chinchas fueron colocadas en envases circulares de poliestireno e introducidas en las cápsulas de radiación; y luego fueron sumergidas hacia la fuente, donde se llevó a cabo la exposición a los rayos gamma.

En las Tablas No. 1 y No. 2, expuestas a continuación, expresamos la dosis en roentgen, los tiempos utilizados para dichas irradiaciones, así como también el número de Rhodnius utilizados.

Dosimetría. Las dosis administradas a nuestra colonia de Rhodnius fueron determinadas por el método de Fricke, el cual se fundamenta en la oxidación del hierro estando en solución de ácido sulfúrico.

Las dosis utilizadas fueron:
2,500 r., 5,000 r., 10,000 r., 20,000 r., 40,000 r., 60,000 r., 80,000 r. y 160,000 r.

Para irradiar las colonias de chinchas empleamos una fuente de Cobalto 60, en un tanque de acero hacia el fondo, el cual contenía una cantidad de 9.5 metros cúbicos de agua desmineralizada, a la temperatura ambiental, como medida de seguridad contra la radiación gamma.

Un total de 5,000 curies de cobalto 60 constituieron la fuente de irradiación. El cobalto radioactivo estaba contenido en placas perfectamente recubiertas de acero inoxidable y la intensidad de la radiación fue variable, entre 35,000 y 200,000 rads por hora. Estos números dependieron del arreglo geométrico de las fuentes y de las muestras a ser tratadas.

Las cápsulas que contenían los especímenes para ser irradiados eran cilíndricas, de 6.5 cms. de diámetro interno y de 36 cms. de longitud; eran de acero inoxidable, cerraban herméticamente y mantenían una atmósfera similar a la ambiental, condición que permitió conservar a los animales en su forma habitual.

Las chinchas fueron instaladas en el tubo G, en donde el campo de irradiación es generalmente uniforme en los primeros 25 cms. de longitud.

Para calcular la DL50 de la información obtenida en el
### TABLA No. 1

**Rhodnius prolixus 0**

<table>
<thead>
<tr>
<th>Dosis en roentgen</th>
<th>Tiempo de irradiación</th>
<th>Adultos irradiados cantidad</th>
<th>Ninfas 5* cantidad</th>
<th>Ninfas 3* cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testigo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 160,000</td>
<td>50'00&quot;</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>2. 80,000</td>
<td>25'00&quot;</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>3. 60,000</td>
<td>18'45&quot;</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>4. 40,000</td>
<td>12'30&quot;</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5. 20,000</td>
<td>6'16&quot;</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6. 10,000</td>
<td>3'8&quot;</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>7. 5,000</td>
<td>1'34&quot;</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>8. 2,500</td>
<td>0'47&quot;</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

### TABLA No. 2

**Rhodnius neglectus**

<table>
<thead>
<tr>
<th>Dosis en roentgen</th>
<th>Tiempo de irradiación</th>
<th>Adultos irradiados cantidad</th>
<th>Ninfas 5* cantidad</th>
<th>Ninfas 3* cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testigo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 80,000</td>
<td>25'00&quot;</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2. 60,000</td>
<td>18'45&quot;</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3. 40,000</td>
<td>12'30&quot;</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4. 20,000</td>
<td>6'16&quot;</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5. 10,000</td>
<td>3'8&quot;</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6. 5,000</td>
<td>1'34&quot;</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7. 2,500</td>
<td>0'47&quot;</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

El experimento fue necesario escoger un método que rindiera el mayor margen de utilidad. El más simple encontrado consistió en trazar los datos en el papel de probabilidad logarítmica, en donde las dosis van colocadas en la escala logarítmica y el por-

_de Juncá y col._: Efectos Radiaciones gamma sobre especies de *Rhodnius* 221
El porcentaje de mortalidad se determinó en un tiempo limitado a 30 días, a partir del momento de la exposición.

**Resultados**

**Efectos de las radiaciones gamma sobre la mortalidad.** Los insectos irradiados demostraron los efectos dañinos de la radiación gamma en forma progresiva, según el incremento en la intensidad de la irradiación. Los trastornos motores fueron los primeros signos de los efectos de la radiación los cuales, al acentuarse, produjeron pérdida de la motilidad y la muerte. En ambas especies de triatóminos, *R. prolixus* y *R. neglectus*, la mortalidad aumentó rápidamente desde 10 por ciento aproximadamente a dosis de irradiación de 2,500 r, hasta un 80 por ciento, a dosis de 40,000 r. A niveles de irradiación superiores a los 40,000 r la tasa de mortalidad aumentó más lentamente, hasta alcanzar un 100 por ciento a la dosis de 160,000 r.

Calculando la dosis letal media (DL50) para *R. prolixus* y *R. neglectus*, en tres diferentes estadios de desarrollo (adultos, ninfa de 5o y 3er estadios), observamos que existía una lige- ra diferencia en la susceptibilidad a la radiación gamma, por parte de las dos especies. El *R. neglectus* demostró ser más susceptible a la irradiación que el *R. prolixus*. Los resultados incluidos en la Tabla No. 3 de-

<table>
<thead>
<tr>
<th></th>
<th>Total de Rh.</th>
<th>Mortalidad</th>
<th>% de Mortalidad</th>
<th>DL50</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>R. prolixus</em> (A)</td>
<td>530</td>
<td>178</td>
<td>33.58</td>
<td>23,000r</td>
</tr>
<tr>
<td><em>R. prolixus</em> (5)</td>
<td>530</td>
<td>175</td>
<td>33.01</td>
<td>25,000r</td>
</tr>
<tr>
<td><em>R. prolixus</em> (3)</td>
<td>530</td>
<td>165</td>
<td>31.13</td>
<td>27,000r</td>
</tr>
<tr>
<td><em>R. neglectus</em> (A)</td>
<td>140</td>
<td>81</td>
<td>57.85</td>
<td>11,900r</td>
</tr>
<tr>
<td><em>R. neglectus</em> (5)</td>
<td>70</td>
<td>39</td>
<td>55.71</td>
<td>13,000r</td>
</tr>
<tr>
<td><em>R. neglectus</em> (3)</td>
<td>70</td>
<td>36</td>
<td>51.42</td>
<td>15,000r</td>
</tr>
</tbody>
</table>
GRÁFICA No. 1
DETERMINACIÓN DEL FACTOR DE DOSIS MEDIA LETAL EN Rhodnius prolirus
ADULTOS

GRÁFICA No. 2
DETERMINACIÓN DEL FACTOR DE DOSIS MEDIA LETAL EN Rhodnius neglectus
ADULTOS
muestran que los adultos de *R. prolixus* requieren de una DL50 de 23,000 r. mientras que el DL50 para *R. neglectus* fue de 11,900 r., o sea aproximadamente la mitad de la dosis efectiva para *R. prolixus*. Una diferencia semejante se demostró en la susceptibilidad a la irradiación por los estadios larvaes (ninjas de 3er y 5o estadios). Las ninjas de *R. Neglectus* fueron más susceptibles que las de *R. prolixus*; y sus DL50 fueron de 13,000 y 15,000 r. para las ninjas de 5o y 3er estadios de *R. neglectus* y hasta de 25,000 r. y 27,000 r., para las ninjas de 5o y 3er estadios de *R. prolixus*. Los resultados expuestos en las gráficas 1 y 2 ilustran los porcentajes de mortalidad y DL50 para los adultos de cada especie expuesta a la irradiación. La dosis letal media (DL50), para cada estadio, fue mayor mientras más joven era el estadio de desarrollo. Así, los adultos de ambas especies fueron más susceptibles a la radiación gamma que su 5o estadio ninfa; y éstas, a su vez, resultaron más susceptibles que las ninjas de 3er estadio (Tabla No. 3).

**Efecto de la irradiación sobre la reproducción.** Uno de los efectos más notables en los adultos de *R. prolixus* y *R. neglectus* expuestos a ciertos niveles de radiación gamma fue el aumento en la oviposición. A niveles de irradiación entre 2,500 r. y 10,000 r., como puede observarse en las Tablas No.4 y No.5, se produjo un apreciable aumento en la postura de huevos y se conservaron las relaciones proporcionales entre ambas especies siendo el *R. prolixus* mucho más prolífico que el *R. neglectus*. A niveles más altos de irradiaición la oviposición disminuyó drásticamente hasta ser interrumpida a dosis de 60,000 r. a 160,000 r., según la especie. Llama la atención que en *R. prolixus* se demostró oviposición aún después de ser irradiado con 80,000 r., pero no a 160,000 r.; mientras que en *R. neglectus* la oviposición se detuvo con la dosis de 60,000 r.

Los resultados obtenidos demuestran que la eclosión de los huevos procedentes de hembras irradiadas fue mucho menor que la eclosión demostrada por las hembras no irradiadas (patrón o testigo). Asumiendo la eclosión demostrada por los huevos de las hembras “normales” (no irradiadas), como 100 por ciento, observamos que en el producto de hembras irradiadas experimentalmente la tasa de eclosión para *R. prolixus* fue de 51.4 por ciento a una dosis de solo 2,500 r. y de 30.2 por ciento para los que recibieron una dosis de 5,000 r., mientras que no hubo eclosión en los huevos procedentes de hembras irradiadas con 10,000 r. o más.

Igualos resultados se observaron en los huevos procedentes de las hembras de *R. neglectus,*
### TABLA N°4

**RHODNIUS PROLIXUS**

**ADULTOS**

<table>
<thead>
<tr>
<th>DOSIS EN ROENTGEN</th>
<th>TOTAL DE R. IRRADIADOS</th>
<th>NUMERO DE HEMBRAS</th>
<th>TOTAL DE HUEVOS (POR HEMBRA)</th>
<th>% DE ECLOSION</th>
<th>% MORTALIDAD DE LOS ADULTOS A LOS 30 DÍAS</th>
<th>% DE MORTALIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATRON NO IRRADIADO</td>
<td>25</td>
<td>193 (7.72)</td>
<td>193 (100)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>160.000</td>
<td>40</td>
<td>20</td>
<td>- (0.00)</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>90.000</td>
<td>30</td>
<td>15</td>
<td>4 (0.26)</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>60.000</td>
<td>30</td>
<td>15</td>
<td>16 (1.06)</td>
<td>-</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>45.000</td>
<td>30</td>
<td>15</td>
<td>145 (2.90)</td>
<td>-</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>20.000</td>
<td>100</td>
<td>50</td>
<td>540 (10.80)</td>
<td>-</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>12.000</td>
<td>100</td>
<td>50</td>
<td>416 (8.32)</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>5.000</td>
<td>100</td>
<td>50</td>
<td>1.562 (31.24)</td>
<td>472</td>
<td>30.21</td>
<td>3</td>
</tr>
<tr>
<td>2.500</td>
<td>100</td>
<td>50</td>
<td>1.628 (32.56)</td>
<td>637</td>
<td>51.41</td>
<td>1</td>
</tr>
</tbody>
</table>

### TABLA N°5

**RHODNIUS NEGLECTUS**

**ADULTOS**

<table>
<thead>
<tr>
<th>DOSIS EN ROENTGEN</th>
<th>TOTAL DE R. IRRADIADOS</th>
<th>NUMERO DE HEMBRAS</th>
<th>TOTAL DE HUEVOS (POR HEMBRA)</th>
<th>% DE ECLOSION</th>
<th>% MORTALIDAD DE LOS ADULTOS A LOS 30 DÍAS</th>
<th>% DE MORTALIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATRON NO IRRADIADO</td>
<td>10</td>
<td>38 (3.80)</td>
<td>38 (100)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80.000</td>
<td>20</td>
<td>10</td>
<td>- (0.00)</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>60.000</td>
<td>20</td>
<td>10</td>
<td>- (0.00)</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>45.000</td>
<td>20</td>
<td>10</td>
<td>77 (7.70)</td>
<td>-</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>20.000</td>
<td>20</td>
<td>10</td>
<td>20 (2.00)</td>
<td>-</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>10.000</td>
<td>20</td>
<td>10</td>
<td>150 (15.00)</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>5.000</td>
<td>20</td>
<td>10</td>
<td>119 (11.90)</td>
<td>7</td>
<td>5.67</td>
<td>4</td>
</tr>
<tr>
<td>2.500</td>
<td>10</td>
<td>10</td>
<td>152 (15.22)</td>
<td>28</td>
<td>16.42</td>
<td>2</td>
</tr>
</tbody>
</table>

*de Junea y col.: Efectos Radiaciones gamma sobre especies de Rhodnius* 225
en las cuales se observó una tasa de eclosión máxima de 18.4 por ciento a los niveles más bajos de irradiación (2,500 r.), 5.9 por ciento a una dosis de 5,000 r. y ninguna eclosión en los huevos procedentes de hembras irradiadas con 10,000 r. o más.

En las gráficas 3 y 4 se ilustran los resultados de la irradiación (Co
60) sobre la oviposición y eclosión en adultos de *R. prolixus* y *R. neglectus*, según observaciones realizadas hasta 30 días después de la irradiación. El aumento de 4.2 y 4.0 veces la producción normal de huevos, que se demuestra en las hembras irradiadas a 2,500 r., es reducido, en un 51.4 por ciento en *R. prolixus* y 18.4 por ciento en *R. neglectus*, por la disminución correspondiente en la tasa de eclosión de los huevos irradiados. Así, aún cuando las dosis bajas de irradiación aumentan la oviposición, no se aumenta en forma apreciable la reproducción. No se incluyen datos relacionados con la supervivencia de las ninñas resultantes de huevos irradiados y que las observaciones fueron limitadas a los primeros 30 días de la exposición a la dosis de radiación gamma.

**Comentarios**

Los resultados obtenidos indicaron que la aplicación de la radiación gamma a los especímenes de *Rhodnius*, según la dosis administrada y la intensidad de la irradiación, causan efectos que pueden ser destructivos (8, 9); y que la radioresistencia, además, decreció con el grado de madurez de los insectos. Se llegó a esta conclusión al observarse que las ninñas eran más resistentes que los adultos y que la dosis letal media empleada en las ninñas era mayor, con una apreciable diferencia, que la dosis requerida para los adultos.

Se observó además que los adultos eran afectados en su actividad móbil, a través de toda la experiencia; y que las hembras experimentaron un aumento en la oviposición, que fue extraordinario, pero con la particularidad de que el porcentaje de eclosión no superó la eclosión que registraron los grupos de *Rhodnius* utilizados como testigos.

Nosotros observamos que las radiaciones gamma de 2,500 y 5,000 r., aceleraron la producción de huevos en *R. prolixus* y *R. neglectus*, aun cuando en distinta proporción, siempre menor cuando era mayor la radiación. El *R. prolixus*, por ejemplo, a una dosis de 2,500 r., tenía un 51.41% de fertilidad; pero con 5,000 r. esa fertilidad se redujo a un 30%. Gómez-Núñez y col. (7) concuerdan solamente en parte con nuestros resultados porque, trabajando con *R. prolixus*, obtuvieron porcentajes de fertilidad hasta con una dosis de 20,000 r., en tanto que nosotros, con una dosis de 10,000 r. o más, no observamos fertilidad alguna. Como estos autores trabajaron solamente con *R. prolixus* no podemos comparar los resultados que nosotros obtuvimos con *R. neglectus*.

El *R. neglectus* es, al parecer, más radiosensitivo que el *R. prolixus*, ya que la dosis media letal es baja, para los adultos y las ninñas; y es más baja, todavía, que la utilizada para un adulto de *R. prolixus*. Se nota
este efecto en sus movimientos, tanto como en la oviposición y fertilidad. Lo comprueba el hecho de que a 2,500 r., la fertilidad era solamente de 18.42%; y que disminuyó a 5%, cuando la dosis de irradiación fue de 5,000 r.; en tanto que con R. prolixus, a una dosis de 5,000 r., el porcentaje de eclosión fue de 30%.

En ambos Rhodnius se observó la disminución de su fertilidad, cuando la dosis de radiación se acercó a los 10,000 r., coincidiendo estos resultados con los trabajos de Gómez-Núñez y col. (7).

**SUMMARY**

Experimental exposure of *Rhodnius prolixus* and *R. neglectus* to gamma irradiation from a 60Co source revealed that *R. neglectus* is more susceptible to radiation than *R. prolixus*. The LD50 for various developmental stages was determined as follows: For *R. prolixus* was 23,000 r. (adultos), 25,000 r. (5th instar) and 27,000 r. (3rd instar). For *R. neglectus* the LD50 was 11.99 r. (adults), 13,000 r. (5th instar) and 15,000 r. (3rd instar). The lethal dose for both triatomine species was 160,000 r.. Low radiation levels of 2,500 r. produced a marked increase in egg production, but sterility of females was only achieved at dose levels of 10,000 r. or higher. In both species, the immature or nymph stages were less radiosensitive than adults.

**BIBLIOGRAFÍA**