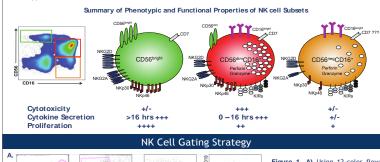
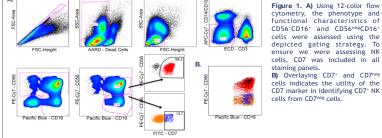
CD56^{neg}CD16⁺ NK Cells are Mature NK cells with Impaired Function during HIV-1 Infection

Sandra Lopez-Verges^{1#}, Vanessa A. York², Steven Deeks³, Jeffrey Martin⁴, Frederick Hecht³, Lewis L. Lanier¹, Douglas F. Nixon², Jeffrey M. Milush²

¹Department of Microbiology and Immunology and the Cancer Research Institute; ²Division of Experimental Medicine; ³Positive Health Program, Department of Medicine; ⁴Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, ČA; "New address: Gorgas Memorial Research Institute for Health Studies, Panama city, Panama

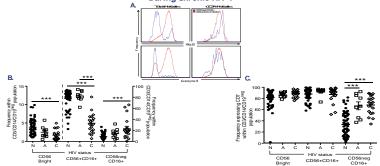
ABSTRACT


HIV-1 infection has a significant impact on the phenotype and function of Natural Killer (NK) cells. A subset of CD3^{neg}CD56^{neg}CD16⁺ Natural Killer (NK) cells is highly expanded during chronic HIV-1 infection, and the role of this subset in HIV-1 pathogenesis remains unclear.


The lack of NK cell lineage-specific markers has complicated the study of minor NK cell subpopulations. Using CD7 as an additional NK cell marker, we found that CD3^{meg}CD56^{meg}CD16⁺ cells are a mixed population of CD7⁺ NK cells and CD7^{meg} myeloid cells. We compared CD7⁺CD56^{meg}CD16⁺ NK cells at CD7⁺CD56^{meg}CD16⁺ NK cells at the vere not on Anti-Retroviral-Therapy when their cells were assessed. CD7⁺CD56^{meg}CD16⁺ NK cells are significantly expanded in HIV-1 infection. They are mature NK cells and express KIRS, NKG2A, NKG2C, and natural cytotoxicity receptors similar to CD7⁺CD56⁺CD16⁺ cells, however they express a higher amount of CD95, a marker of NK cell activation. CD7⁺CD56⁺CD16⁺ k cells in healthy donors produced minimal IFN₇ following K562 target cell or IL-12 plus IL-18 stimulation; however, they did degranulate in response to K562 cells similar to CD7⁺CD56⁺ NK cells. HIV-1 infection resulted in a slight decrease of NKp30 and NKp46 expression, reduced IFNy secretion following K562 or cytokine stimulation by both NK cell subsets compared to healthy donors. Significantly fewer CD7⁺CD56^{meg}CD16⁺ NK cells may B and perforin expression and increased expression of CD107a in the absence of stimulation, particularly in HIV-1-infected subjects, suggests that CD7⁺CD56^{meg}CD16⁺ NK cells may have recently engaged target cells. NL cells from HIV-infected subjects experience chronic exposure to pro-inflammatory cytokines and increased oxidative stress. Interestingly, in HIV-infected subjects CD7⁺CD56^{meg}CD16⁺ NK cells have increased expression of the aging-related cyclindependent kinase inhibitors p16/INK 4a and p21/Waf1, that are induced by oxidative stress.

NK CELL BACKGROUND

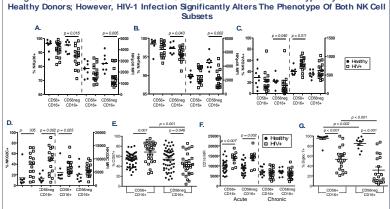
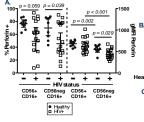
- Constitute 5 20% of all peripheral blood lymphocytes
- Generally characterized as CD3^{neg}CD56⁺CD16^{+ or -} lymphocytes

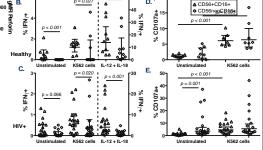

CD3^{me}CD3^{6me}CD16⁺ NK cells are expanded in chronic infectious diseases such as HIV-1 and hepatitis C virus infection and appear to have diminished effector functions.

RESULTS

Figure 2 -CD56^{neg}CD16⁺ Cells are a Heterogenous population and CD7 Significantly Impacts the Interpretation Of their Cells Phenotype ; CD7⁺CD56^{neg}CD16⁺ NK Cells Are Expanded During Chronic HIV-1

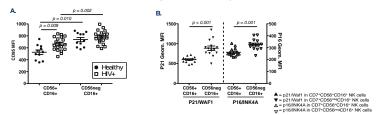
A) CD56-CD16⁺ and CD56^{+est}CD16⁺ cells were gated as in Figure 1 and analyzed for NKp30 and Granzyme B expression prior to or following CD7 gating. When the analysis is performed without removing CD7^{mest} cells, few CD56^{+est}CD16⁺ cells appear to express NKp30 or Granzyme B. However, when CD7⁺ cells are analyzed, CD7⁺-CD56^{+est}CD16⁺ NK cells actually express higher levels of NKp30 and similar levels of Granzyme B compared to CD7⁺-CD56^{+est}CD16⁺ NK cells. Frequency of classically defined NK within CD3^{mest} CD14^{est} CD19^{est} gopulation in healthy donors (*(J**N, n = 63) and CD56^{+est}CD16⁺ cells within CD3^{mest} CD14^{est} CD19^{est} CD19^{est} gopulation. CD7 Frequency of CD7⁺ NK cells in CD56^{+est}CD16⁺ and CD56^{+est}CD16⁺ cells within CD3^{mest} CD14^{est} CD19^{est} gopulation. CD7 is expressed on -40% and -65% of CD56^{+est}CD16⁺ cells in healthy and HIV-1-infected subjects respectively.


Figure 3 - CD7+CD56^{neg}CD16⁺ and CD7+CD56+CD16⁺ NK Cells Are Phenotypically Similar In

In Healthy donors CD7⁻CD56⁺CD16⁺ and CD7⁻CD56⁺esCD16⁺ NK cells have a similar phenotype with minimal differences: CD56⁺⁺SCD16⁺ NK cells have a higher MFI for NKp46 and fewer express Siglec⁻7. In HV-1-infected subjects the phenotype of both subsets is altered⁺ NKG2C and CD16 expression are increased and Siglec⁻⁷ is decreased in both subsets; in CD7⁻CD56⁺⁺SCD16⁺ NK cells the expression of NKp30, NKp46 and NKG2A is decreased, whereas CD57, a marker of maturation, is increased in CD56⁺⁺SCD16⁺ NK cells and decreased in CD56⁺⁺SCD16⁺ NK cells. Frequency (left axis) of each NK cell subset expressing (A) NKp30, (B) NKp46, (C) NKG2A, (D) NKG2C, (E) CD57, (F) CD16 and (G) Siglec 7; and (A-G) the density (right axis) of each marker assessed by mean fluorescence intensity (MFI).

Figure 4 – HIV-1 Infection Has A Significant Impact On The Function Of Both CD7+CD56+CD16+ And CD7+CD56negCD16+ NK Cells


A) Perforin expression in CD7:CD56:CD16: and CD7:CD56:CD16: K cells of healthy (n=10) and chronically HIV-1-infected subjects (n=17). Chronic HIV-1 infection results in decreased perforin expression in both NK cell subsets.

D.

Assessment of IFNg (**B & C**) and CD107a (**D & E**) expression by CD7:CD56^{CD16} and CD7:CD56^{MB}CD16' NK cells following *in vitro* stimulation with K552 target cells or IL.12 + IL.18. In healthy controls and HIV-1-infected subjects, CD7:CD56^{MB} NK cells fail to produce IFNg, however they degranulate similar to CD7:CD56' NK cells. HIV-1 infection decreases IFNg production, but increases CD107a degranulation.

Figure 5 –Increased activation and CDK expression in CD7+CD56negCD16+ NK Cells in chronically HIV-1-infected patients

A) CD95 expression, a marker of NK cell activation, on CD7·CD56^{nes}CD16⁺ NK cells was compared to CD7⁻CD56⁺CD16⁺ NK cells in healthy (n = 11) and chronically HIV-1-infected subjects (n = 19). CD95 expression is higher on CD56^{nes}CD16⁺ NK cells and is increased in both subsets by HIV-1 infection. B) Expression of the cyclin-dependent kinase inhibitors p21/WA11 (left half) and p16/INK4 (right half) in CD7⁻CD56⁻CD16⁺ CD16⁺ on CD7⁻CD56^{nes}CD16⁺ NK cells from chronic HIV-1-infected patients. P21/Wa11 and p16/INK4a are expressed higher on CD7⁻CD56^{nes}CD16⁺ NK cells.

CONCLUSIONS

CD7+CD56^{neg}CD16⁺ NK cells are expanded in HIV-1 infection. We found increased expression of cyclin-dependent kinase inhibitors in CD7+CD56^{neg}CD16⁺ NK cells from HIV-1 chronic subjects possibly resulting from oxidative stress and chronic exposure to pro-inflammatory cytokines. Thus CD7+CD56^{neg}CD16⁺ NK cells are activated, mature NK cells that are likely generated from chronic immune activation associated with persistent viremia. Treatment strategies that include anti-oxidants to reduce oxidative damage or cytokine therapies, such as IL-2, may allow NK cell

